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Abstract
A method for summing together datasets from gated car-

diac PET acquisitions is described. Optical flow techniques are
used to accurately model non-rigid motion present during the
cardiac cycle so that a one-to-one mapping is found between
each voxel of two gated volumes. Using this mapping, image
summing can take place, producing a composite dataset with
improved statistics and reduced motion-induced blur. Results
using  data from a gated cardiac study on a dog are presented.

I. INTRODUCTION

Gated acquisition of PET data is a common method for
compensation of motion due to the cardiac cycle in imaging of
the heart. An unfortunate side-effect of this gating is that the
statistical quality of each gated image suffers as the total num-
ber of PET events is distributed over a number of different
images. The reconstructed images may be summed to improve
statistics, but to do so without introducing motion-induced
blurring, a correspondence must first be found between the
voxels in each dataset. Only after this mapping is obtained can
these corresponding voxels be added. For simple rigid-body
motion, the correspondence problem amounts to finding the six
parameters of translation and rotation which best align two
gates. Motion of the heart throughout the cardiac cycle, how-
ever, is not rigid. Therefore, rather than a six parameter motion
model relating the position of a voxel in one dataset with its
corresponding voxel in the other, a dense 3D vector map at the
same resolution of the dataset is required. This paper describes
how 3D optical flow techniques were used to obtain the non-
rigid motion estimates between two gates in a cardiac PET
study on a dog. The motion estimates are subsequently used to
sum the two gates in order to improve statistical quality.

II. DATA ACQUISITION

Cardiac PET data were acquired using the CTI/Siemens
ECAT EXACT HR tomograph which we have modified in col-
laboration with CTI, Inc. for doubly-gated acquisitions. Details
of this acquisition system, which allows gating of both the res-
piratory and the cardiac cycles, may be found in [1]. An anes-
thesized dog was injected with 20.2 mCi 18-FDG and was
positioned lying on its back within the tomograph. After allow-
ing time for the isotope to clear the blood pool, emission data
were collected for 20 minutes. Emission data were distributed
into 16 different gates: the cardiac cycle was gated into 8 25-
msec segments beginning at the peak of the R-wave, and the
respiratory cycle was divided into 2 segments, one representing
end expiration, the other representing inspiration. Because of
the depth of anesthesia, the dog remained primarily in the expi-
ration state during the study. Prior to the administration of the

isotope, a 20 minute ungated transmission dataset was acquired
to correct for the effects of attenuation.

Each gate was separately reconstructed into 128× 128 ×
47 voxel volume (voxel size 1.0× 1.0 × 3.1 mm) using stan-
dard filtered backprojection techniques. Data presented in this
paper represent one gate during systole, the other during end
diastole, and both during end expiration.

III. M OTION ESTIMATION

Optical flow techniques have historically been used to esti-
mate pixel correspondences between 2D images obtained from
two different viewpoints or at two different times. The vector
field describing the mapping between corresponding pixels in
two images is called a flow field. Classically, researchers have
relied on two types of constraints to determine the flow field:
first an image matching constraint, and second a smoothness
constraint on the resulting flow field. For example, Horn and
Schunk make the assumption that for small changes in camera
position, the image intensity will be approximately conserved
in the two images for pixels corresponding to the same object
in space [2]. They combine this constraint with a global motion
vector smoothness constraint to obtain a least squares solution
of the motion field.

The 2D optical flow technique has recently been general-
ized to 3D density datasets, such as CT and MRI, to compute
the 3D vector flow field describing voxel correspondences
between two deformable objects [3],[4],[5],[6]. Again, these
techniques rely upon the assumption of a high correlation
between corresponding voxel intensities in the two datasets,
and smoothness of the motion field. Whereas in the 2D case,
the rationale for smoothness was that connected surfaces
should have similar motion, in the 3D case, the rationale for
motion smoothness is that the imaged material is continuous
and subject to elasticity and incompressibility limitations.

In our formulation, we begin with the approach of Zhou, et.
al. [6], where the motion estimation is described as follows.
Define two 3D density fields, , and

 in a discrete domain,

,

where are the dimensions of the image volume. We
seek to find the motion field,

and the deformed volume of ,

such that the following error measures over each voxel are
minimized:
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image matching:

smoothness:

and incompressibility:

where we use the notation, .

In cardiac PET images, the principal feature is the left ven-
tricle of the heart. Though it is a reasonable assumption that the
total intensity of voxels within the ventricle is conserved
between successive gates, and that the motion of connected tis-
sue within the myocardium should be smooth, it is not neces-
sarily a reasonable assumption for the activity seen within
adjacent regions, such as the blood pool. Therefore, though the
motion smoothness and incompressibility constraints make
sense for the image voxels corresponding to the ventricle, they
do not necessarily hold at the interfaces of the ventricle to adja-
cent regions. For this reason, we use a variable smoothness
weighting, , which strongly weights the smoothness
term within uniform areas of , but does not penalize motion
discontinuities at high image gradients.

A least squares solution to the weighted error terms over all
voxels is found via successive linear approximations of .
Assuming the true motion field isu, and the current estimate of
the field is , then a Taylor series approximation for can
be defined as:

Substituting this relation into the error equations, the fol-
lowing Euler-Lagrange equations for  can be derived:

where we have set for notational simplicity.
These equations are solved via standard finite difference tech-
niques using a steepest descent algorithm. At each step,

is computed and the best minimizing the
weighted error terms is calculated. This motion field increment
is added to the overall motion field and the procedure is
repeated until the algorithm converges to a solution.

It was found that because of the noisy nature of the individ-
ual PET gates, a multiscale approach was necessary to obtain
suitable convergence. The 128× 128 × 47 volume was sub-
sampled into 64× 64 × 23, 32× 32 × 23 and 16× 16 × 23
datasets using a uniform cubic B-spline approximation to a
Gaussian pyramid [1]. A motion flow field solution was found
at the lowest resolution, then was propagated at the next level
as the initial condition of the flow field. This technique not

only speeded the overall convergence, but was also necessary
to avoid solutions at local minima which are obviously not cor-
rect.

Once the deformed volume, matching is
obtained, subsequent processing to obtain a composite PET
dataset is straightforward. The composite sum is computed as

Because the deformed volume conserves the total counts
present in the original volume (except at the volume borders),
the composite volume represents the total PET counts acquired
in the two gates.

IV. RESULTS

Two gates acquired from the previously described dog
study were selected for testing the algorithm. A gate at peak
systole was chosen as ; a gate at end-diastole was chosen
as . Three orthogonal slices through each dataset are seen in
Figure 1. The motion estimation technique was carried out to
obtain the appropriate mapping which warps the systole
dataset to best match the volume at diastole. Figure 2 displays
slices from the systole dataset, the flow vectors computed, and
slices from the warped dataset. The images show that a reason-
able motion estimate was made to produce a dataset matching
the heart shape at end diastole.

Results of combining the motion-corrected data are pre-
sented in Figure 3. The top row of images represent the data
summed without prior motion compensation. Comparing with
the same slices depicted in Figure 1, it is obvious that the con-
tractile motion of the heart is blurred by such summing. The
bottom row of images show the resulting sum using the motion
corrected systole dataset.

V. DISCUSSION

The motivation for development of this algorithm grew out
of past experience which showed that though cardiac gating
can stop motion due to the cardiac cycle, in practice, it is fre-
quently of little consequence in PET imaging because the
resulting gates are individually of poor quality due to limited
statistics. We have demonstrated that by using a deformable
motion model, it is feasible to effectively combine image data
obtained from different segments of the cardiac cycle. It is
hoped that because of the improved statistics in the composite
motion corrected image, quantitative measurements can be
improved by this technique. We note that in its current form,
the algorithm appears to only track the gross heart movement,
primarily in a direction normal to the myocardial surface. It is
known that complex motion occurs during the cardiac contrac-
tion. A nonuniform orientation of the myocardial fibers
induces complex twists and stretches that are often tangential
to the surface normal of the ventricle boundaries [7],[8]. Such
motion would be hard to detect from PET data not only due to
the spatial and temporal limitations of the detector, but also
because of a lack of trackable features within the myocardium.
Therefore, we do not propose that the motion model would be
useful for strain and related kinematic calculations. However,
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when suitable features do exist, such as a local isotope uptake
nonuniformity within the myocardium, it is expected that the
algorithm will perform adequately because of the image
matching and incompressibility constraints imposed. Like-
wise, it is expected that as long as differentiating image fea-
tures exist, the technique should track regions with different
wall motion, such as scarred tissue in an infarcted area.

An obvious extension of this work would be to morph and
sum all cardiacs gates from a gated acquisition to a reference
position, rather than just the two gates described here. Given
that convergence for the highest resolution (128x128x47
voxel) dataset could be obtained in roughly 20 minutes on an
SGI 150 MHz R4400 workstation, summing of 8 cardiac
phases would be reasonable. It is also noted that the PET
dataset used here was of fairly high signal to noise. In practice,
it is common for reconstructed datasets from a gated cardiac
study to be of much poorer quality. An important topic of
future research is whether the motion estimation technique
will adequately perform with noisier images.
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Figure 1 Three orthogonal views of the gated datesets. Top three images show dog heart during systole. Bottom three images
show the heart during end-diastole. Edge map shown on these and subsequent figures are isocontours of the diastole dataset.
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Figure 3 Motion Compensation Summing. Summing systole and diastole volumes without motion compensation improves statistics,
but induces blur proportional to the cardiac motion (TOP). By first morphing the systole dataset to match the diastole dataset, and then
adding, statistical quality is improved with minimal motion blurring (BOTTOM). An edge map of the diastole data is shown on both
sets of images here for reference.
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Figure 2 Calculation of Motion Field. The 3D motion vector field (B) is computed which maps each voxel in the systole volume (A)
to its corresponding location in the diastole image (D). The morphed systole image (C), shows that a good match is obtained with the
target diastole image. Edge contours seen in images (A),(C),(D) are obtained from the edge map of (D).


